
 

   

SANDIA REPORT 
SAND2017-7851 
Unlimited Release 
Printed July 2017  

 

Radar Doppler Processing with 
Nonuniform Sampling 
 
 

Armin W. Doerry 

 

 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering 
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s 
National Nuclear Security Administration under contract DE-NA-0003525. 

Approved for public release; further dissemination unlimited. 

 

 

 

 

 

 

 
  



- 2 - 

 

Issued by Sandia National Laboratories, operated for the United States Department of 
Energy by Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represent that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government, any agency 
thereof, or any of their contractors or subcontractors.  The views and opinions expressed 
herein do not necessarily state or reflect those of the United States Government, any agency 
thereof, or any of their contractors. 

Printed in the United States of America. This report has been reproduced directly from the 
best available copy. 

Available to DOE and DOE contractors from 

 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 

 

Available to the public from 

 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 

 

 
  



- 3 - 

 

SAND2017-7851 
Unlimited Release 
Printed July 2017 

 

 

Radar Doppler Processing with 
Nonuniform Sampling 

 

Armin W. Doerry 
ISR Mission Engineering 

Sandia National Laboratories 
PO Box 5800 

Albuquerque, NM 87185-0519 

 

 

Abstract 

Conventional signal processing to estimate radar Doppler frequency often assumes 
uniform pulse/sample spacing.  This is for the convenience of the processing.  More 
recent performance enhancements in processor capability allow optimally processing 
nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends 
uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control 
measures. 
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Foreword 

This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
author. 

 

 

 

 

 

 

 

 

Classification 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction and Background 

The realm of pulse-Doppler radar systems is defined by the action of a sequence of pulses 
being transmitted, with echoes therefrom recorded and processed.  Conventional 
processing across pulses especially in coherent systems often assumes the pulses are 
equally spaced, either in time or in spatial offset.  We observe that radar modes that 
attempt to measure velocity, such as Ground Moving Target Indicator (GMTI) radar, 
typically attempt to collect data with uniform spacing in time.  However, radar modes 
that attempt to measure spatial frequencies, such as Synthetic Aperture Radar (SAR), 
may be operated to collect data with some degree of uniform spacing in distance (for 
example slaving sample timing to velocity). 

Uniform sample spacing is particularly convenient for conventional processing schemes 
that often employ efficient transforms such as the Fast Fourier Transform (FFT) for 
Doppler frequency calculations.  Even when the collected data is not precisely uniform, 
data samples are typically resampled to a uniform spacing for subsequent processing.  For 
data that are uniformly sampled, or even nearly so, a problematic consequence is the 
manifestation of grating lobes in their spectrum, leading to ambiguous Doppler frequency 
measures.  We emphasize the point that strong Doppler grating lobes are a direct 
consequence of uniform sample spacing.  In addition, another consequence to any 
Doppler frequency notches, such as for stationary clutter suppression, is that they too are 
repeated to form periodic “blind” velocities.  Furthermore, a Doppler spectral analysis of 
uniform samples often requires amplitude tapering to control deleterious sidelobe 
responses, with the problematic side-effect of reducing Signal-to-Noise Ratio (SNR). 

More recently, processing capabilities that facilitates the viability of back-projection 
processing techniques as an alternative to transform-based processing removes the 
imperative for uniform sample spacing.  As such, we may directly process purposeful 
non-uniformly spaced samples in an optimal manner, thereby with their employment 
mitigating some of the problematic side-effects such as the aforementioned grating lobes 
and blind velocities, and in some cases even the SNR loss. 

With respect to radar signal processing we offer the following background sources. 

Collecting raw SAR data with optimum spatial sampling to facilitate transform-
based image formation is discussed in a report by Doerry.1   

SAR processing using back-projection is described in detail in a report by Doerry, 
et al.2 

GMTI processing using back-projection is presented in another report by Doerry.3 

The conventional approach to resolving Doppler ambiguities is to stagger the Pulse 
Repetition Frequency (PRF) of the radar, with conventional uniformly spaced samples 
within the staggered subintervals, if the stagger interval is greater than a single pulse.  
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Skolnik4,5 provides in his esteemed books an introduction to designing staggered PRF 
systems.  Extended discussions can also be found in texts by Galati,6 and by Schleher.7 

Applying a random “jitter” to the radar PRF has also been investigated, and is discussed 
by among others Vergara-Dominguez.8  We note that early investigations often dealt with 
effects of suboptimal processing of such jittered PRF data. 

More recently, techniques have been explored to disambiguate Doppler in GMTI modes 
by examining residual range migration.  Representative publications include those by 
Xia, et al.,9 Zhu and Liao,10,11 and Huang, et al.12 

The processing of sampled-data is very related to array-antenna design and operation.  
Much of the mathematics is readily transferable.  Aperiodic and random antenna arrays 
are discussed in some detail in a textbook by Steinberg.13  Other representative relevant 
publications include those by Kim and Jaggard,14 Jarske, et al.,15 Kumar and Branner,16 
Lo,17

 Lo and Lee,18 Steinberg,19 and Unz.20 

More abstract treatments of non-uniform sampling are available in a number of 
publications, exemplified by the following. 

An excellent textbook on non-uniform sampling is edited by Marvasti.21  His text 
also addresses a number of applications for nonuniform sampling. 

Yen22 examines “some special nonuniform sampling processes” and deduces 
“some interesting properties of bandwidth-limited signals.”  

Davis and Lanterman23 examine aliasing with nonuniform samples. 

Aldroubi and Grӧchenig24 discuss “modern techniques for nonuniform sampling 
and reconstruction of functions in shift-invariant spaces.” 

We examine herein a more unconstrained sample spacing to facilitate advantage to 
unambiguously identifying Doppler spectral content. 

We note that Legg, et al.,25 examined using a randomly varying PRF to disambiguate 
Doppler in a SAR image.  Herein we extend these ideas to achieve further-improved 
performance. 
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2 Executive Summary 

Uniform sample spacing, while particularly “nice” to process, nevertheless exhibits the 
well-known baggage of aliasing due to grating lobes leading to ambiguous spectrum 
measurements. 

Adjusting sample times to nonuniform spacing interferes with aliasing, and can 
disambiguate spectral calculations.  The nonuniform nature of useful sampling strategies 
might be deterministic, random, or chaotic. 

Proper spectrum calculations must take into account not only the actual nonuniform 
sample times, but also the local sample spacing at those times.  Window taper functions 
for sidelobe control must also be adjusted to actual sample times.   

For radar Doppler analysis, conventional transform-based frequency estimation such as 
the FFT are inadequate to the task for processing nonuniform-spaced samples.  However, 
the more recent viability of back-projection processing techniques also makes viable the 
more general calculations necessary for samples with nonuniform spacing.  

In some circumstances, the sample spacing itself can be chosen to provide the sidelobe 
control of window taper functions, so that no additional signal sample amplitude 
weighting is required.  This offers the maximum possible SNR of a spectral response. 
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3 Detailed Discussion 

3.1 Some Basics 

To set up the following discussion, we begin by defining a generic signal 

 x t   = continuous function of time t. (1) 

As we will be interested in the Fourier Transform of functions, we accordingly define 

    2j ftX f x t e dt






    = forward transform, and 

    2j ftx t X f e df




   = inverse transform, (2) 

where the Fourier Transform is in terms of frequency f.  We may use shorthand to 
identify the transform pair as 

   x t X f . (3) 

3.2 Periodic (Uniform) Sampling 

We now define the periodic sampling function in the conventional manner and identify 
its transform, namely 

   s s s
n u

t T n f f f u     , (4) 

where 

n = pulse index, 
u = spectral Nyquist band index, 

sT  = uniform sampling interval, 

1s sf T  = constant sampling frequency, and 

 z  = Dirac delta function. (5) 

The individual samples of  x t  are then given (modelled) by 

         s s s s sx T n x t t T n x T n t T n     , (6) 

and the sampled function is identified as 
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     s s s
n

x t x T n t T n  . (7) 

We will generally assume that we have N samples of the function over an interval of 
duration T.  For uniform periodic samples, we have 

sT T N . (8) 

Using some identities and theorems, the Fourier Transform of the sampled function is 
well-known and given by 

       *s s s s s
u u

X f X f f f f u f X f f u     , (9) 

where “*” denotes convolution. 

Digging a little deeper into the Fourier Transform lets us write the specific calculation 

      2j ft
s s s

n

X f x T n t T n e dt






  , (10) 

which can be rearranged to 

      2j ft
s s s

n

X f x T n t T n e dt






   . (11) 

Performing the integration yields 

    2 sj fT n
s s

n

X f x T n e  . (12) 

This is in fact the Discrete-Time Fourier Transform (DTFT).  If we select uniformly 
spaced sample frequencies, where 

s
k

f f
K

 , (13) 

where 

K = number of frequency samples over the interval [0, )sf , (14) 

then 
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 
2

k
j n

K
s s s

n

k
X f x T n e

K

   
 

 . (15) 

This is customarily referred to as simply the Discrete Fourier Transform (DFT) of the 
sequence  sx T n . 

We further note that the DFT is related to the continuous-time spectrum via Eq. (9), such 
that 

 
2

k
j n

K
s s s s

u n

k
X f f u T x T n e

K

   
 

  . (16) 

If  x t  is suitably band-limited, then we may identify the baseband spectrum as 

 
2

k
j n

K
s s s

n

k
X f T x T n e

K

   
 

 , (17) 

for suitable values of k.  What is important to note here is that the calculation of the 
actual spectrum requires scaling the DFT result by the sampling interval sT .  This is 

typically ‘not’ what most implementations of the DFT, such as the Fast Fourier 
Transform (FFT), in fact calculate. 

The Data Interval 

We stipulate that we will generally be interested in a finite number of samples over a 
finite data collection interval.  Accordingly, we identify our data characteristics for 
subsequent analysis as 

N = number of data samples, with 0 1n N   , and 
T = data collection interval, with individual sample times 0 nt T  . (18) 

These definitions will hold true for the remainder of this report.  Nevertheless, for 
periodic/uniform sampling, we identify 

s
T

T
N

 . (19) 

With malice aforethought, we may also now write the baseband spectrum as 

    2 nj ft
n

n

T
X f x t e

N
  . (20) 
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3.3 Aperiodic (Nonuniform) Sampling 

Let us now choose arbitrary sampling times such that our sampled function is  

     s n n
n

x t x t t t  . (21) 

We will still generally assume that we have N samples of the function over an interval of 
duration T, but the samples at times nt  are no longer required to be uniformly spaced.  In 

antenna array design this may sometimes called a “spatial taper.” 

The spectrum of this sampled function is then 

      2j ft
s n n

n

X f x t t t e dt






  , (22) 

which can be rearranged to 

      2j ft
s n n

n

X f x t t t e dt






   , (23) 

and then simplified to 

    2 nj ft
s n

n

X f x t e  . (24) 

However, what we really want is an estimate of the continuous-time spectrum  X f .  

This requires scaling the input signal samples according to their density, which we 
identify with a “local” sampling frequency and associated “local” sampling period as 

 s nf t  = local sampling frequency, and 

    1
s n s nT t f t


     = local sampling period (interval). (25) 

Note that these are now non-constant functions of nt .  Appendix A in an earlier report 

offers justification for this.26  Accordingly, our estimate of a band-limited continuous-
time spectrum is identified as 

      2 nj ft
s n n

n

X f T t x t e  . (26) 

We may still choose to index our spectral index to sampled frequencies where 
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ref
k

f f
K

 , (27) 

where now 

K = number of frequency samples over the interval [0, )reff , 

reff  = a specified reference frequency. (28) 

Since sampling is no longer periodic, we also no longer have the replicated spectra that 
Eq. (4) would otherwise imply.  This means that the aliasing that occurs with uniformly 
sampled data is subverted, allowing us to discriminate tonal signals beyond what 
otherwise might be a sampling bandwidth. 

We also stipulate that there is no particular reason other than convenience for sampled 
frequencies to be regular in the frequency domain.  We will nevertheless to choose to do 
so hereafter anyway. 

Local Sampling Frequency/Period Calculation 

Here we explore the relationship between sample times and the local sampling 
frequency/period calculations. 

Let us begin by defining a reference continuous function for the basis of sampling period 
calculations as 

 g z  = some specific differentiable reference function. (29) 

Here, the argument z is merely an arbitrary placeholder for now.  We further identify that 
at specific integer arguments 

  ng n t . (30) 

Essentially, nt  are merely samples of  g z  at integer arguments.  Some additional 

properties include 

 0 0g  , and 

 g N T . (31) 

This allows us to identify the local sampling period as 

     s n z n
z n

d
T t g z g z

dz 


  . (32) 
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Otherwise, given the local sampling period, we may identify the sample positions as a 
summation of previous sampling periods, as we might expect, as 

 
1

0

n

n s m
m

t T t



  . (33) 

This is only approximate due to the vagaries inherent in sample-time increments not 
being precisely equal to the local sampling period at a particular sample time.  This 
difference diminishes for smooth functions as the number of sample times increases. 

Often, we will choose a  g z , but such that 

 
0

N

z

g z dz T


  , (34) 

and therefrom calculate  g z .  Occasionally, however, we may in fact begin with  g z  

and therefrom identify  g z .  Sometimes, iteration between the two might even be 

required. 

In any case, once we have a  g z  and  g z  pair, we may use Eq. (30) and Eq. (32) to 

identify both sample times and local sampling period.  This is what we want. 

We note that our choice of N samples in T seconds remains consistent with the case of 
uniform sampling.  That is, we are not seeking advantage by increasing either of these 
over the uniform sampling case.  We are merely rearranging the specific sample times to 
no longer be uniform. 

Comments 

Marvasti21 addresses the question “Under what conditions do the nonuniform samples 
represent a signal uniquely?”  He answers with the following lemma, attributed to 
Requicha27. 

Lemma for 1-D Signals:  If the nonuniform samples { nt } satisfy the Nyquist rate 

on the average, it can uniquely represent a band-limited signal (deterministic or 
random) if the samples are not the zero-crossings of a band-limited signal of the 
same bandwidth. The set { nt } is then called a sampling set.   

We understand from this that as long as the “average” sampling rate is not diminished, 
then nonuniform sampling offers no loss in information compared to uniform samples for 
band-limited signals. 
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3.4 Aperiodic (Nonuniform) Sampling with Window Tapers 

Window taper functions are used in processing data to control processing sidelobe 
characteristics.  There are many windows from which to choose, with various trades in 
parameters and characteristics.28 

To facilitate using window taper functions with aperiodic data samples, we need to define 
the window functions in a manner other than uniformly spaced samples.  Let us define a 
window function in terms of a continuous function, namely 

1

2

t
w

T
  
 

. (35) 

The window functions we shall consider typically (although exceptions exist) have the 
following convenient properties. 

1.  w z  is real, even, and typically positive.  Argument z is an arbitrary placeholder.   

2.  w z  is of finite length, defined over the interval  1 2,1 2 , with 

     rectw z w z z . (36) 

We stipulate  w z  is zero outside of the interval  1 2,1 2 . 

3.  w z  has unit DC gain.  This means 

  1w z dz




 . (37) 

This also means that if any part of  w z , edges notwithstanding, is less than one, 

then  0 1w  . 

4.  w z  is typically non-increasing with distance from its center. This means 

   1 2w z w z  for 1 2z z . (38) 

An example of such a window taper function is the Hann (a.k.a. Hanning) window, 
stipulated to be 

      1 cos 2 rectw z z z  , (39) 
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where 

  1 1 2
rect

0

z
z

else

 
 


. (40) 

Employing such a window function modifies our estimate of the band-limited 
continuous-time spectrum to 

      21

2
nj ftn

s n n
n

t
X f w T t x t e

T
   

 
 . (41) 

Of course we may continue to index this to sampled frequencies where, as before 

ref
k

f f
K

 . (42) 

We observe that to estimate the band-limited continuous-time spectrum in Eq. (41), the 
specific data samples are weighted with two distinct factors.  The first is the local 
sampling period  s nT t , and the second is the actual taper function  1 2nw t T  .  These 

two factors combine for a net data weighting being their product    1 2n s nw t T T t   . 

Special Case 

Consider the case where the variations in the two weighting factors ‘cancel’ each other, 
that is, we now let 

 1

2
n

s n
t T

w T t
T N

   
 

  for all nt . (43) 

This of course implies that the local sampling frequency equals the local window 
weighting appropriately scaled, namely 

  1

2
n

s n
tN

f t w
T T

   
 

  for all nt . (44) 

More generally, we can identify the reference function and its derivative by solving the 
differential equation 

    1

2

T N
g z

g z
w

T

 
 

 
 

  for all 0 z N  . (45) 



- 19 - 

 

We acknowledge this is not trivial.  The following iterative numerical technique 
borrowed from an earlier report on Non-Linear FM (NLFM) chirp generation may be 
used to calculate the required functions.29 

1. Initialize  g z T N  . 

2. Integrate  g z  to calculate  g z . 

3. Scale  g z  and  g z  to meet the T constraint of Eq. (31). 

4. Calculate 
  1

2

g z
w

T

 
 

 
, and therefrom  g z  using Eq. (45). 

5. Repeat steps 2-5 until convergence. 

Nevertheless, from this solution we may use Eq. (30) and Eq. (32) to identify both sample 
times and local sampling period. 

Having done this, Eq. (43) will hold, thereby allowing a “windowed” DFT result by 
reducing Eq. (41) to simply 

    2 nj ft
n

n

T
X f x t e

N
  . (46) 

That is, the data can be simply added with appropriate phase shift, and no overt amplitude 
tapering, and ‘still’ achieve processing sidelobe reduction.  From Appendix A, we also 
understand this to be the optimum SNR result. 

A caveat is that any window taper functions used in Eq. (45) cannot go to zero, and 
probably shouldn’t even approach very near to zero.  For example, the Hann window of 
Eq. (39) would not be a very good candidate for this. 

We further suggest that any sample spacing and window taper function combination that 

brings    1 2n s nw t T T t    closer to Eq. (43) will generally improve SNR, even if Eq. 

(43) cannot be exactly achieved. 

An interesting viewpoint is that there are actually two window taper functions to 
consider.  The first is the equivalent taper function due to  s nT t  alone, and the second is 

the net desired window taper function to yield the final spectrum characteristic. 
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3.5 Aperiodic Sample Times Selection 

Given the analysis in the previous sections, we summarize with the following procedure 
for selecting the sample times. 

1. Select one of the functions  g z  and  g z  for a desired characteristic, and 

calculate the other, both subject to the constraints in Eq. (31).  The function  g z  

may also need to be constrained to greater than some minimum value in 
consideration of range ambiguities. 

2. From the functions  g z  and  g z , calculate the sample times nt  and local 

sample spacing  s nT t  at those times, using Eq. (30) and Eq. (32). 

For subsequent spectral analysis of the sampled signal, we might add the following steps. 

3. Choose a final net window taper function  w z . 

4. Calculate the signal spectrum using Eq. (41), perhaps at specific frequencies using 
Eq. (42). 
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4 Sampling Strategies 

We now examine several sampling strategies. 

In all subsequent cases, we expect common parameters for the following. 

N = number of data samples, with 0 1n N   , and 
T = data collection interval, with 0 nt T  . (47) 

Note that the “average” sampling rate will be held constant.  In particular, for the 
following examples, we will assume N = 1024, and T = 0.25 s.  To illustrate signal 
processing fidelity, we will also assume a noise-free signal with unit amplitude with 
arbitrarily chosen frequency of 0.25 N T .   Specifically, our input test signal is 

   2 0.25j N T tx t e   = arbitrary test signal. (48) 

Unless indicated otherwise, we will also assume employment of a Hann window taper 
function. 

4.1 Constant Sample Spacing (Reference) 

To provide reference for following aperiodic sampling strategies, we begin with the 
conventional uniform sampling, conducive to FFT processing, where 

  T
g z

N
   = constant sample time increments, and 

  T
g z z

N
  = linear increment in sample times. (49) 

For this first sampling of our reference signal we choose a constant PRF; a constant 
sample time increment.  This is the conventional sampling strategy.  Furthermore, we will 
begin with no window taper function. 

Figure 1 shows the sample-time increment as a function of essentially sample index.  
Note that this is constant.  Figure 2 shows the spectrum of the signal.  Note that for a 
uniform sampling strategy, we have replicated spectra at integer offsets of the constant 
PRF; these offset intervals being multiples of N T .  These grating lobes are well-
understood.  Otherwise, the structure of the response is precisely what we expect for 
using no window taper function, namely a sinc-like response.  Figure 3 is a zoomed 
version of the mainlobe response, showing the associated high sidelobes. 

If we use the same sampling strategy, but with a Hann window taper function, the plots 
are modified to those of  Figure 4 through Figure 6.  Note the sidelobe reduction, albeit at 
the expense of a slightly broadened mainlobe. 
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Figure 1.  Sample-time increments normalized to T/N. 

 
Figure 2.  Spectrum of input signal with Uniform tapering. 

 
Figure 3. Zoomed rendering of Figure 2. 
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Figure 4.  Sample-time increments normalized to T/N. 

 
Figure 5.  Spectrum of input signal using Hann window taper function. 

 
Figure 6.  Zoomed rendering of Figure 5. 
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4.2 Staggered/Stepped Sample Spacing 

A not-uncommon practice to disambiguate Doppler frequency is to stagger the radar 
PRF.  This involves dividing the overall observation interval into multiple subintervals, 
with each sub-interval operating at a unique PRF.  The information from the subintervals 
are then combined or compared to ascertain the proper Doppler estimate.  

We exemplify this technique by dividing the N pulses into four groups, each with an 
equal-number of pulses, and with the sample time increments illustrated in Figure 7.  
While various schemes can be concocted for how the spectra from the individual 
subintervals are combined, we shall combine the data coherently for a single spectrum 
response. 

As we might expect, and as shown in Figure 8, we still have a maximum response at the 
correct signal frequency, but the regular grating lobes previously exhibited in Figure 5 
have now had their energy divided into lesser grating lobes corresponding to aliasing due 
to the individual PRFs of the subintervals. Furthermore, the lesser lobes are broader as 
well.  We do note that while the lesser grating lobes are reduced, some are still quite 
strong. 

For this reason, a more typical operating procedure would be to coherently process each 
subinterval separately, rather than as one single data set.  Separate detections for the 
various subintervals would be compared, passing only those that coincided.  This 
amounts to a voting scheme, or non-coherent filtering of the subinterval results.  Since 
coherent processing is only over a subinterval, there is an attendant SNR loss, especially 
for low-SNR signals. 

As the number of subintervals increases, we would observe a corresponding increase in 
the number of lesser grating lobes, but the strength of the individual aliased components 
would themselves decrease. 

We note that the stagger need not be generally increasing, and can in fact be randomly 
ordered.  Furthermore, the specific PRF of the subintervals also need not be regularly 
spaced, nor do the lengths of the subintervals need be equal in time or in number of 
pulses. 

Figure 10 through Figure 12 illustrate a set of randomly chosen PRFs for each of four 
subintervals. 

Figure 13 through Figure 15 illustrate a set of randomly chosen PRFs for each of 64 
subintervals, with each subinterval of length 16 pulses.  Note that the proper mainlobe 
response remains nice and clean. 
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Figure 7.  Sample-time increments normalized to T/N. 

 
Figure 8.  Spectrum of input signal using Hann window taper function. 

 
Figure 9.  Zoomed rendering of Figure 8. 
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Figure 10.  Sample-time increments normalized to T/N. 

 
Figure 11.  Spectrum of input signal using Hann window taper function. 

 
Figure 12.  Zoomed rendering of Figure 11. 
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Figure 13.  Sample-time increments normalized to T/N. 

 
Figure 14.  Spectrum of input signal using Hann window taper function. 

 
Figure 15.  Zoomed rendering of Figure 14. 
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4.3 Linear-Chirped Sample Spacing 

We now examine a “linear-chirped” sample spacing; a sample spacing where the sample 
time increments change with each pulse in a linear manner.  Specifically, we construct 

  1
2

T a a
g z z

N N

         
 = sample time increments, and 

  21
2 2

T a a
g z z z

N N

        
 = sample times, (50) 

where 

a  = the variation of  g z  with respect to T N . (51) 

Figure 16 illustrates the case of  g z  with 1a  .  Note its linear ramp. 

Figure 17 shows the spectrum of the input signal so sampled, with the additional sample 
scaling of a Hann window taper function.  Figure 18 details the mainlobe response and 
near-in sidelobes.  We note that in spite of nonuniform sampling, that the spectral 
response is virtually perfect for the mainlobe and a significant bandwidth around the 
mainlobe, in fact a region greater than N T . 

We also note that the grating lobes evident in Figure 5 are absent, having been replaced 
by broadly smeared versions thereof with attendant reductions of at least 22 dB in this 
example.  The reduction furthers as N increases.  The coherence of any energy that 
otherwise might have been aliased in Doppler has essentially been severely diminished. 
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Figure 16.  Sample-time increments normalized to T/N. 

 
Figure 17.  Spectrum of input signal using Hann window taper function. 

 
Figure 18.  Zoomed rendering of Figure 17. 
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4.4 Sinusoidal Sample Spacing 

We now examine a “sinusoidal” sample spacing; a sample spacing where the sample time 
increments change with each pulse in a sinusoidal manner.  Specifically, we construct 

  2
1 cos

2

T a
g z z

N N

         
 = sample time increments, and 

  2
sin

4

T aN
g z z z

N N




        
 = sample times, (52) 

where 

a  = the peak-to-peak variation of  g z  with respect to T N . (53) 

Figure 19 illustrates the case of  g z  with 1a  .  Note its sinusoidal nature. 

Figure 20 shows the spectrum of the input signal so sampled, with the additional sample 
scaling of a Hann window taper function.  Figure 21 details the mainlobe response and 
near-in sidelobes.  We note that in spite of nonuniform sampling, that the spectral 
response is virtually perfect for the mainlobe and a significant bandwidth around the 
mainlobe, in fact a region greater than N T . 

We also note that the grating lobes evident in Figure 5 are absent, having been replaced 
by a number of lesser sidelobes with attendant reductions of at least 19 dB in this 
example.  The reduction furthers as N increases.  The coherence of any energy that 
otherwise might have been aliased in Doppler has essentially been severely diminished. 
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Figure 19.  Sample-time increments normalized to T/N. 

 
Figure 20.  Spectrum of input signal using Hann window taper function. 

 
Figure 21.  Zoomed rendering of Figure 20. 

 



- 32 - 

 

4.5 Log-Periodic Sample Spacing 

We now examine a “log-periodic” sample spacing; a sample spacing where the sample 
time increments change with each pulse in an exponential manner, i.e. where the log of 
the sample spacing is periodic.  Specifically, we construct 

  azT
g z be

N
      = sample time increments, and 

  azT b b
g z e

N a a
    

 = sample times, (54) 

where 

b = the initial minimum sample spacing,  
a  = the exponential growth rate of the sample time increments. (55) 

Note that Eq. (31) requires that a be found to satisfy  

 g N T . (56) 

Figure 22 illustrates the case of  g z  with 1 2b  , and 0.001228a  . 

Figure 23 shows the spectrum of the input signal so sampled, with the additional sample 
scaling of a Hann window taper function.  Figure 24 details the mainlobe response and 
near-in sidelobes.  We note that in spite of nonuniform sampling, that the spectral 
response is virtually perfect for the mainlobe and a significant bandwidth around the 
mainlobe, in fact a region greater than N T . 

We also note that the grating lobes evident in Figure 5 are absent, having been replaced 
by broadly smeared versions thereof with attendant reductions of at least 23 dB in this 
example.  We observe that this is somewhat better than the example of Figure 17, 
although the smearing is slightly broader.  The reduction furthers as N increases.  The 
coherence of any energy that otherwise might have been aliased in Doppler has again 
essentially been severely diminished. 
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Figure 22.  Sample-time increments normalized to T/N. 

 
Figure 23.  Spectrum of input signal using Hann window taper function. 

 
Figure 24.  Zoomed rendering of Figure 23. 



- 34 - 

 

4.6  Random Sample Spacing 

We now examine a random sample spacing; a sample spacing constructed from a random 
process.  Specifically, we arbitrarily generate a 9th order polynomial with random 
coefficients.  There is nothing special about this process except that in spite of its 
randomness, it is still smooth. 

Our process is to generate the random polynomial to give us  g z , and then integrate to 

give us  g z .  The resulting function is scaled and shifted to satisfy Eq. (31). 

Figure 25 illustrates a resulting  g z . 

Figure 26 shows the spectrum of the input signal so sampled, with the additional sample 
scaling of a Hann window taper function.  Figure 27 details the mainlobe response and 
near-in sidelobes.  We note that in spite of nonuniform sampling, that the spectral 
response is virtually perfect for the mainlobe and a significant bandwidth around the 
mainlobe, in fact excellent over a region greater than N T . 

We also note that the grating lobes evident in Figure 5 are still absent, having been 
replaced by broadly smeared versions thereof with attendant reductions of at least 23 dB 
in this example.  The coherence of any energy that otherwise might have been aliased in 
Doppler has again essentially been severely diminished. 

Any of a number of random or chaotic functions might generate suitable sample spacings, 
provided that results are scaled/shifted to satisfy Eq. (31).  Smoothness, essentially a high 
degree of correlation from one sample to the next, is a desirable trait. 
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Figure 25.  Sample-time increments normalized to T/N. 

 
Figure 26.  Spectrum of input signal using Hann window taper function. 

 
Figure 27.  Zoomed rendering of Figure 23. 
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4.7 Sample Spacing for Sidelobe Control with Maximum SNR 

As discussed in section 3.4, sample spacing may be selected in some cases to effect a 
particular window taper function. 

We now examine a sample spacing calculated to yield a spectrum identical to that of a 
Hamming window without any additional amplitude weighting, for which we identify 

       1
1 cos 2 rectw z z z





 

  
 

, (57) 

with 25 46   for a Hamming window function.  Specifically, we recall Eq. (45), and 
stipulate 

    1

2

T N
g z

g z
w

T

 
 

 
 

  for all 0 z N  . (58) 

Using the procedure outlined in section 3.4, we numerically calculate  g z  accordingly. 

Figure 28 illustrates  g z  to yield the Hamming window characteristic. 

Figure 29 shows the spectrum of the input signal so sampled, with no additional 
amplitude scaling by either sample spacing or window taper function.  Figure 30 details 
the mainlobe response and near-in sidelobes.  We note that the nonuniform sampling 
alone achieved a spectral response that is virtually perfect for the mainlobe and some 
bandwidth around the mainlobe.  We do observe that the region of good agreement is 
somewhat less than the N T  bandwidth of previous examples. 

Nevertheless, we still note that the grating lobes evident in Figure 5 are absent, having 
been replaced by broadly smeared versions thereof with attendant reductions.  The 
reduction furthers as N increases.  The coherence of any energy that otherwise might 
have been aliased in Doppler has again essentially been severely diminished, the 
aforementioned diminished region of good agreement with Hamming window spectrum 
notwithstanding. 
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Figure 28.  Sample-time increments normalized to T/N. 

 
Figure 29.  Spectrum of input signal using Hamming window taper function. 

 
Figure 30.  Zoomed rendering of Figure 29. 
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4.8 Discussion 

One might ask whether uniformly sampled data can be resampled to nonuniform spacing 
and processed accordingly to advantage.  Regrettably, this is not viable to remedy 
aliasing or Doppler ambiguity because the resampling process inherently assumes 
antialiasing filters built into the interpolation filter.30  Consequently, since the aliasing is 
already “built in” to the data, it is not affected by subsequent processing, including 
interpolation. 

While several deterministic sample-spacing functions have been presented here, it takes 
little imagination to construct other functions, some which might offer specific attributes 
desirable for some particular application.  Important parameters for radar applications 
will be that  g z  and  g z  conform to the characteristics discussed in section 3.3, with 

perhaps the additional constraint that  g z  be always greater than some minimum value 

determined by range-ambiguity requirements. 

4.9 Spectrum Disambiguation 

The real power of nonuniform sampling may be exemplified by examining the case of a 
signal with multiple frequencies.  Accordingly, we put forth an example with the sum of 
three equal-amplitude tones with the following frequencies. 

frequency #1 = 0.25 N T , 

frequency #2 = 0.8 N T , and 

frequency #3 = 1.6 N T . 

Figure 31 illustrates the spectrum using Hann weighting with uniform sample spacing.  
Note that characteristic aliasing renders problematic ambiguity of the spectrum. 

Figure 32 illustrates the spectrum using Hann weighting but with log-periodic sample 
spacing as described in Figure 22.  We note that what otherwise would have been aliased 
signals have been smeared to render essentially background noise, thereby clearly 
revealing the true disambiguated spectral components. 

Figure 33 illustrates the same calculations as Figure 32, except that 16 times the number 
of signal data samples were used, but with constant ratio N T , implying T was extended 
by the same factor.  Note the background smearing is to a significantly lower level. 
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Figure 31.  Spectrum of input signal using Hann window taper function, and uniform sample 
spacing. 

 
Figure 32.  Spectrum of input signal using Hann window taper function, and log-periodic sample 
spacing. 

 
Figure 33.  Same as Figure 32, except with 16 times the number of signal data samples. 
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“The New England Journal of Medicine reports that 9 out of 10 doctors agree  
that 1 out of 10 doctors is an idiot.”  

--  Jay Leno 
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5 Conclusions 

We reiterate the following key points. 

 Nonuniform (aperiodic) sampling allows disambiguation of radar Doppler, with 
attendant advantages in reducing grating lobes, blind velocities, and perhaps even 
improved SNR in the processed spectrum. 

 Proper spectrum estimation requires nonuniform samples to be scaled in 
amplitude proportional to their instantaneous pulse sampling period.  Optimal 
spectrum estimation also requires accounting for the actual sample times. 

 Any window taper functions employed for sidelobe control require additional 
sample amplitude scaling according to the pulse position in the overall data 
collection interval. 

 The nonuniform sample spacing can be specifically chosen such that any 
additional amplitude scaling to effect a window taper function is not required.  
This allows maximum SNR even with the benefits of improved sidelobe response 
equivalent to having employed a window taper function in the processing. 

 Employing smooth variations in sample spacing often allows a cleaner spectrum.  
This suggests that a smooth deterministic sample-spacing modulation is 
preferable to one with random steps or jumps. 
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“Get your facts first, then you can distort them as you please.” 
--  Mark Twain 
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Appendix A – Weighted Sums and Noise 

Here we examine weighting sums of noisy samples to minimize noise.  This problem is 
one of essentially deriving an optimal filter, which can be found in numerous text books 
and articles.  Here we present a very simplified version.  We will use the method of 
Lagrange multipliers. 

We will assume N data samples, each with identically distributed but independent zero-
mean Additive White Gaussian Noise (AWGN). 

Without loss of generality, we shall for the moment assume a DC signal of constant unit 
values for each sample.   

We want to find an optimum linear weight vector, w , applied to a noisy signal vector, x .  
Optimality requires a choice, for which the standard choice is to minimize the Mean 
Squared Error (MSE).  This optimization is typically performed subject to some 
constraint on the solution.  Accordingly, we define several relevant parameters as 
follows. 

 0 1 1...
T

Nx x x x  = noisy measurement vector, and 

 0 1 1...
T

Nw w w w  = weight vector which combines the measurements. 

 (A1) 

We identify the superscript ‘*’ as the conjugate, the superscript ‘T’ as the transpose, and 
the superscript ‘H’ as the conjugate transpose.  Both vectors are of length N. 

In general, the noisy measurement vector is a signal corrupted by AWGN.  That is 

 x s n , (A2) 

where the constituent components are 

s = signal vector, and 
n = noise vector. (A3) 

We define a constraint based on an input vector; a DC signal of unit value, namely 

 1 1 ... 1 T
d v  = signal vector for the constraint. (A4) 

We desire a weight vector that yields the proper result for the input signal vector of 
interest.  To force a non-trivial solution, our constraint is then 

H
d Nw v . (A5) 
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Basically, we want the sum of our weights to equal N.  This means our DC gain is N. 

To proceed, we identify the relevant second moment as 

2H H H HE E  xxw x w xx w w R w , (A6) 

where 

E y  = is the expected value of y , and 

HExxR x x  = the covariance matrix of x . (A7) 

We may also readily calculate that xxR is the sum of constituent covariance matrices 

 xx ss nnR R R  , (A8) 

where 

HEssR s s  = the covariance matrix of s, and 

HEnnR n n  = the covariance matrix of n. (A9) 

Our minimum noise estimate occurs when 2Hw n  is minimized in the statistical sense. 

This means we wish to minimize 

2H H H HE E  nnw n w nn w w R w . (A10) 

Using the method of Lagrange multipliers, we can construct the Lagrange function 

   H H H
d dN N      nnw R w w v v w , (A11) 

where to maintain consistency with the literature, we identify for this development 

  = the Lagrange multiplier. (A12) 

We may then find the optimum weight vector by taking the derivative of the Lagrange 
function with respect to Hw  and setting it to zero.  Doing so yields  

0opt d nnR w v , (A13) 

where we identify the specific solution 
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optw  = the optimum weight vector w , (A14) 

which may be further rearranged to solve for 

1
opt d  nnw R v . (A15) 

Plugging into the earlier constraint equation Eq. (A5) yields 

1H H
opt d d dN    nnw v v R v . (A16) 

We may then solve this scalar equation for the Lagrange multiplier as 

  11H
d dN 

   nnv R v . (A17) 

We observe that is a real scalar (constant).  Finally, combining Eq. (A17) with Eq. 
(A15), we arrive at the result for the optimum weight vector as 

  11 1H H H
opt d d dN

  nn nnw v R v v R  (A18) 

Note that we have made use of several identities from complex calculus and properties of 
the covariance matrix, including 

d
Hd

w

w
 is undefined, 

H nn nnR R , and 

 1 1H nn nnR R . (A19) 

For identically distributed but independent zero-mean AWGN, we may without loss of 
generality assume 

nnR I  = identity matrix. (A20) 

Therefrom we may calculate the optimum weights to be 

     
1 11 1 1 1 ... 1H H H

opt d d dN N N
   nn nnw v R v v R , (A21) 

which we can simplify to 

 1 1 ... 1
T

opt w . (A22) 
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We summarize this result by stating that the optimum (in the squared-error sense) 
weighting of samples is a uniform amplitude weighting.  This means that a uniform 
weighting will minimize the noise, and thereby maximize the Signal-to-Noise Ratio 
(SNR) of the sum.  Obviously, departing from a uniform weighting will reduce the SNR 
of the sum from the maximum that would otherwise be achievable. 
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